Contextual Scene Classification
Overview
The purpose of Contextual Scene Classification is to identify the context of visual content. A key use case would be content-based ad targeting: helping media companies to sell more granular contextually-targeted ad spots.
Input: Hive's API can receive both images and videos. Videos have their frames sampled and treated as separate images. Support for text and audio inputs will be made available separately.
Output: For each image, Hive's API will return a set of classes with a confidence score from zero to one. These classes are explained below.
Content Alignment Classes
Hive's API returns classes from four broad categories: settings, subjects, objects and the IAB Content Taxonomy. The IAB Content Taxonomy is an industry-standard for ad-targeting use cases. More information on these classes is available here.
Settings:
- airplane_indoor
- amusement_park
- apartment_outdoor
- aquarium_or_sealife
- bar_or_nightclub_indoor
- beach_outdoor
- body_shop
- car_indoor
- casino_indoor
- concert_or_auditorium_outdoor
- concert_or_theatre_indoor
- construction_site
- courtroom_indoor
- cruise_outdoor
- factory_indoor
- farm_crop
- gym_indoor
- home_bathroom
- hospital_indoor
- hotel_indoor
- hotel_outdoor
- house_indoor
- house_outdoor
- kitchen_indoor
- library_bookstore
- movie_theatre
- museum_indoor
- no_location
- office_indoor
- other_indoor
- other_outdoor
- park_outdoor
- place_of_worship
- pool_or_hot_tub_indoor
- pool_or_hot_tub_outdoor
- pre_k_through_12_indoor
- restaurant_indoor
- retail_outdoor
- retail_store_indoor
- road_outdoor
- sports_arena
- tv_studio
- university_indoor
- university_outdoor
- wilderness_outdoor
- zoo_or_wildlife
Subjects:
- award_show
- birth
- birthday
- cooking
- crashes
- funeral
- graduation
- musical_performance
- other_subject
- political_event
- runway_show
- sports_&_athletic_activities
- wedding
Objects:
- no_motor_vehicle
- yes_motor_vehicle
- no_lawnmower
- yes_lawnmower
- no_tractor
- yes_tractor
- no_cargo_ship
- yes_cargo_ship
- no_boat_dock
- yes_boat_dock
- no_fashion
- yes_fashion
- no_shaver
- yes_shaver
- no_flower
- yes_flower
- no_holiday_decor
- yes_holiday_decor
- no_food
- yes_food
- no_pots_pans
- yes_pots_pans
- no_wine
- yes_wine
- no_beer
- yes_beer
- no_children_toys
- yes_children_toys
- no_tablet
- yes_tablet
- no_gambling
- yes_gambling
- no_video_games
- yes_video_games
- no_camera
- yes_camera
- no_gym_equipment
- yes_gym_equipment
- no_baby
- yes_baby
- no_children
- yes_children
- no_medical_staff
- yes_medical_staff
- no_train
- yes_train
- no_airplane
- yes_airplane
- no_cell_phone
- yes_cell_phone
- no_tv
- yes_tv
- no_person
- yes_person
- no_dog
- yes_dog
- no_cat
- yes_cat
- no_bed
- yes_bed
- no_public_transportation
- yes_public_transportation
- no_motorcycle
- yes_motorcycle
- no_commercial_truck
- yes_commercial_truck
- no_station_wagon
- yes_station_wagon
- no_suv
- yes_suv
- no_van
- yes_van
- no_pick_up_truck
- yes_pick_up_truck
- no_computer
- yes_computer
- no_small_standard_car
- yes_small_standard_car
- no_dining_table
- yes_dining_table
- no_outer_space
- yes_outer_space
Expected Output
For each frame there will be a set of classes each with a score scaled from 0 (negative) to 1 (positive), indicating the level of confidence for the classification.
Supported File Types
Image Formats:
gif
jpg
png
webp
Video Formats:
mp4
webm
avi
mkv
wmv
mov
Updated about 1 year ago